
Byron - an Event-Driven
Microservices Framework

João Francisco Lino Daniel
Leonardo Lana Violin Oliveira

Monograph submitted
to the

Instituto de Matemática e Estatística
of the

Universidade de São Paulo
for the

Course Final Monograph
of the

Bachelor’s in Computer Science

Course:
Computer Science

Advisor:
Prof. Dr. Alfredo Goldman

Co-advisor:
Prof. Dr. Eduardo Guerra

BsC. Renato Cordeiro Ferreira

Contents

1 Introduction 1

2 Background 4
2.1 Microservices . 4
2.2 Infrastructure . 9

3 What is Byron? 12
3.1 Architecture . 12
3.2 Hello, Byron! . 15
3.3 Features . 22
3.4 When to use . 23

3.4.1 Social Media - beneficial . 23
3.4.2 Bank - non-beneficial . 23
3.4.3 Startup on validation stage - non-beneficial 24

4 Study Case 25
4.1 Context . 25
4.2 Methodology . 26

4.2.1 Scenario - Consistency within a Single Component 27
4.2.2 Scenario - Consistency across Multiple Components 28
4.2.3 Scenario - Decoupling of Multiple Components and One Failing 31

4.3 Analysis . 32

5 Comparison between Byron and other frameworks 33
5.1 Ruby on Rails . 33
5.2 NestJS . 34

6 Conclusion 35

Bibliography 37

3

Chapter 1

Introduction

In the past twenty years, the Web became ubiquitous to the point where availability
and reliability are essential to online systems [Wam19]. By the end of 2007, the amount
of mobile users in the web surpassed 3 billion [08] – the total amount of user of the
web goes beyond that. Considering the scale of billion of users, even if you system have
0.1% of downtime, this represents being unable to respond to hundreds of thousands
of requests.

Recent studies focus on creating and improving of a series of techniques, principles
and architectures to keep up with these demands – studying fine-grained distributed
systems, data synchronization techniques, automation of infrastructure, to name a few
topics. This demand pushed systems to become more complex. There are a lot of
aspects that increase the chances of failure and there are a handful of practices that
make systems highly coupled, when those failures trigger a domino effect – a failure in
one part causes failures all across the system.

The scale of the web nowadays puts online systems to work under a massive load.
Under these circumstances, systems are more subject to failures. If the system runs in
a single process, a failure means the entire service is offline and needs to be rebooted.
Distributed systems, more specifically microservices become very popular to address
this issue due to the provided decoupling.

Adopting microservices does not mean decoupling. If the parts implement a syn-
chronous communication model, there’s still coupling: whenever a part fails, all the
other parts that requested data from it cannot finish successfully, causing it to fail too.
An asynchronous communication model might provide decoupling.

The aim of this project is to create a solution for developing microservices that
values decoupling, an architecture that provides decoupling and data consistency. To
guide this project, three research questions were defined:

Q1 Is it possible to propose an architecture that provides data consistency within a
system component, even if it is eventual consistency?

1

1.0 1.0

Q2 Assuming the proposed architecture and considering more than one component,
does it sustain the eventual consistency across all components?

Q3 Does the proposed architecture provide decoupling between components, so that
in case of one failing, the others do not fail too?

To reach this objective, Byron – an event-driven microservices framework – was
built. It is based on three major principles: reactivity addresses the demand issue,
stressing qualities about response times and internal communication standards; Cloud-
Native focus on guiding the development of an application that is conceived to run
with an automated, fully managed infrastructure; and Fast-Data models data handling
as soon as it arrives.

Byron defines a Domain Specific Language (DSL) to represent the application’s
entities, their relationships and actions, allowing developers to focus on the business
domain. It also offers a declarative interface for dealing with events. Byron provides
a Command Line Interface (CLI) that works as a tool to scaffold a working directory
and to set up the app in a development environment, by bootstrapping basic resources
and providing means to update whenever wanted.

To measure that Byron fulfills its goals, a set of scenarios of a real application
implemented with Byron is presented. Each scenario lists external interactions with
the app and automated tests that implement them. In the end, each one exposes some
features that helps answering the research questions, strengthening the hypothesis that
Byron works as a solution for decoupling microservices.

Development community provides a reasonable amount of tools that are used in the
development process of microservices, from distributed solutions for databases to whole
web frameworks. Byron stands out for being a cross-cutting solution that implements
a service-level architecture: it has a message broker for event-sourcing fully integrated
with microservices that listen to events and update its local cache; it makes declarative
and clear the task of emitting events.

The development process of Byron was divided into two parts: an initial version
developed without tests, and a final version developed using Test-Driven Development.
Byron’s first version was set aside after an experiment with real developers, after col-
lecting a positive feedback, yet with some issues, of the impact of the framework. That’s
because, as it had no tests, it wasn’t a good call to keep developing something that
became untestable. The second version let the architecture emerge from tests and the
result was a more cohesive software.

There are two other features of interest in Byron that differentiate it: first, as
the architecture emerged from the tests, and more importantly, it emerged whilst the
code was being developed, Byron has an architecture built to be extensible, so future
contributions from the community can improve its forces; second, its clearer code,

1.0 1.0

in comparison with the first version, makes the framework more maintainable, which
suggests a more stable future of development.

Chapter 2 presents the conceptual background upon which this project was settled.
Chapter 3 introduces the Byron framework with its terminology, features and some
contexts when the adopting of it is beneficial. Chapter 4 presents the study case and
its analysis. Chapter 5 presents comparisons between Byron and other frameworks,
namely Ruby on Rails and NestJS. Finally, chapter 6 discusses the results and future
work related to the project.

Chapter 2

Background

This chapter presents the theory supporting this project development, from the basis
of architectural and infrastructural principles, to the articulation of those concepts and
the created abstractions.

2.1 Microservices

The Microservices Architecture is an architectural model on which the system gets
divided into a set of independent parts, each one with its own well-defined responsibil-
ity – each part is called a microservice. This implies that the system is composed by
multiple code bases and, during runtime, it is the composition of multiple processes.
It raised in popularity because it provides two ways of scalability: in team sizes, due
to the division of code bases; and in volume of work to be executed, due to the mul-
tiple binaries in runtime [New15]. This independence between microservices enforces
independent deployment, allowing different development teams to move at their own
speed. It also enables each microservice to be scaled according to its own workload and
demand [Ric15].

Although this architecture has become very popular, it is not the best solution for
all systems. The Microservices Architecture focus on scalability. Whenever that is not
an issue to the development or to the application, then it’s better not to adopt this
architecture [New15]. That is because microservices offer a series of difficulties to be
overcome, since it creates a distributed system, and that can overpower the development
team.

When this architecture applies, its difficulties can be dealt with some patterns, as
follows:

• API Gateway provides to their clients an abstraction of the system’s distributed
APIs and its addresses, making the microservices system to externally look like

4

2.1 2.1

it’s a monolith1; Figure 2.1 compares two systems – with and without API Gate-
way –, where ms X stands for microservice X and the arrows are representations
of requests;

external

client

the system

ms 1

ms 2

ms 3

ms 4 ms 5

external

client

the system

ms 1

ms 2

ms 3

ms 4 ms 5

API

Gateway

Figure 2.1: Comparison between two microservices systems: on the left, without API Gate-
way, the external client must address directly each microservice; on the right, adopting API
Gateway, the system itself routes the requests to the correct microservices, centralizing the
address to the external client

• Command-Query Responsibility Segregation (CQRS) decouples the read-
ing and writing model of services, thus optimizing each operation according to
the use case and external demand; Figure 2.2 compares two systems – with and
without CQRS –, where ms X stands for microservice X and the gray object
represents a database;

the system

ms 1

the system

ms 1

ms 2
write-onlyread-and-write

read-only

Figure 2.2: Comparison between two approaches: on the left, without CQRS, on which
scaling ms 1 scales at the same time read and write potential; on the right, adopting CQRS,
on which is possible to better fit the requirements of read and writes that might be different,
by scaling independently ms 1 or ms 2.

1For further reading, search for Monolith and Layered Architecture at [Ric15]

2.1 2.1

• Event Sourcing enables microservices to take care of their own state in isola-
tion, whereas notifying changes to other components via message-passing; Fig-
ure 2.3 compares two systems – with and without Event Sourcing –, where ms
X stands for microservice X, two-headed arrows are synchronous requests and
single-headed arrows are message passing;

the system

ms 1

ms 2

ms 3

the system

ms 1

ms 2

ms 3
Message

Broker

Figure 2.3: Comparison between two approaches: on the left, without Event Sourcing, on
which microservices communicate synchronously one with another; on the right, adopting
Event Sourcing, on which ms2 and ms3 don’t have to wait for ms1 to process the request.

The idea of an event is a significant transition in state – an event doesn’t exist, it
simply occurs. A message is the implementation of an event, an object used to notify
that the event happened – it may have a payload within, where data is stored. The
Message Broker is the composition of a Message Queue (MQ) used to broadcast the
messages, and an Event Log model, i.e., what is stored is the sequence of changes over
the time – differently from a database that is often used to store the final state only.

Reactive Systems is the set of principles that makes systems more robust, more
resilient and more flexible [Bon+14], following four characteristics: responsiveness
sets focus on providing consistent and reasonable response times, so that it enhances
reliability and simplifies error handling by an external client; resiliency keeps the
system responsive in face of a failure; elasticity keeps the system responsive in various
workloads – without bottlenecks; and message-driven provides loose coupling by
exchanging asynchronous messages through the boundaries of the system.

Responsiveness can be implemented by returning an answer to the client as soon
as the request handler has it, i.e., either if the request fails or if it succeeds, it imme-
diately responds accordingly. The emission of an event, if it is due, happens almost
simultaneously to the response. Figure 2.4 compares two sequence diagrams – with
higher and with lower responsiveness –, where arrows represent actions and the sooner
they happen, the higher they are in the diagram.

2.1 2.1

client microservice rest of

the system

requests

validates

notifies

answers

responds

client microservice rest of

the system

requests

validates

notifies

responds
Δt1

Δt2

Figure 2.4: Comparison of two systems: on the left, with larger ∆t(∆t1 > ∆t2), since the
response happens after the rest of the system gets notified, hence lower responsiveness; on
the right, with smaller ∆t(∆t2 < ∆t1), since the response happens as soon as possible, hence
higher responsiveness.

Resiliency can be enhanced by implementing data replication and event sourcing, to
provide to a microservice all the data it needs to create a response to any request made
to it. Not all data a microservice needs is created within its domain of actions, but it can
receive the data via messages, whenever the data is created elsewhere. Then, adopting
a local cache database for each microservice, thus creating data replication, provides
a degree of decoupling that whenever a request is made, the responsible microservice
does not depend on any other to respond. This implementation improves resiliency by
reducing the chances of a domino effect – when the failure of a microservice implies on
the failure of others, and so on.

Elasticity is a feature achievable via implementing scalable microservices. When the
system is a monolith, it tends to have bottlenecks and its scalability gets compromised.
With microservices, it is possible to have scalability on demand, as Figure 2.5 shows.
It compares two systems – a monolith and one following microservices architecture
–, where each gray box is a copy of the whole monolithic system, ms X stands for
microservice X and the number of stacked copies of each microservice can be different.

2.1 2.1

the system

ms 1ms 1ms 1ms 1

ms 2ms 2ms 2

ms 3ms 3

ms 4ms 4

ms 5ms 5ms 5ms 5ms 5ms 5ms 5

the system

the system

the system

the system

Figure 2.5: Comparison of two systems: on the left, a monolith, represented on a scaled
scenario, on which there are many copies of the entire system; on the right, one following
microservices architecture, on which its parts can be scaled up individually according to their
needs.

Adopting message-driven is a paradigm change, in sense that communication be-
comes based on reaction, other than being active as request-oriented. In a message-
driven system, when there’s a part that depends on data from others, it listens to
events around that data, so that when it needs to use that data, it already has. Figure
2.6 shows two sequence diagrams representing this paradigm change – the blue dashed
box focuses on the complexity of the microservice B that depends on external data.

client ms A ms B

requests (mut)
req. (mut)

requests

emits event

emits event

responds

responds

notifies evt

responds

requests

validates

& stores

validates

validates
validates

responds

requests data

responds

client ms A ms B data

backplane

Figure 2.6: Comparison between two systems: on the left, request-based paradigm, on which
ms B doesn’t have all data it needs and requests it to ms A; on the right, message-driven
paradigm, on which, although the system is based on data replication, its microservices don’t
have a direct dependency between each other.

Message-driven is a feature that fits well with Reactive Systems and with another
concept: Fast Data Architecture (FDA). Treating messages as they come in is
based on the policy of stream-orientation, and this configures a Fast Data System.

2.2 2.2

It’s interesting to note that, following this approach, batch-orientation is a sub-case
where streams are finite. FDA also relies on a strong, resilient, stream-oriented data
back-plane: log systems and message queues – a system can implement it with a message
broker.

2.2 Infrastructure

Virtualization is the technique of emulating in software the hardware, which over-
comes the difficulties to configure and maintain, and avoids the waste of resources
caused by running physical machines [GN18]. The use of Virtual Machines (VMs)
makes possible to isolate two applications running on the same physical machine, which
provides improvements in the usage of resources of the physical machine, and in the
application’s portability [GN18].

When a VM is launched, the operating system of the physical machine – called host
O.S. – emulates over itself an entire operating system for the VM – called guest O.S..
This adds an overhead compared to running the application directly on the host OS.
Containerization is a technique that encapsulates code, dependencies, networking
and file-system into a single process. There’s a resemblance with VMs, but the major
difference is that a container is an isolated process created directly on the host OS –
it solves VM’s overhead of stacking guest OS. Docker is a container engine based on
Linux namespaces for providing isolation.

Cloud-Native Infrastructure (CNI) is an infrastructure that is hidden behind
useful abstractions, controlled by APIs, managed by software and has the purpose of
running applications [GN18]. These features determine a scalable and efficient pattern
to manage infrastructure.

The adoption of useful abstractions enables CNI to manage the underlying IaaS –
Infrastructure as a Service, refer to Figure 2.7 – by creating a new layer of objects above
it. It then exposes an API to be consumed avoiding re-implementation. Management by
software is a core feature of CNI, since it enhances scalability, resiliency, provisioning
and maintainability of the infrastructure [GN18]. That is because the management
software enters in between the CNI layer and the underlying IaaS, mapping the former’s
abstractions into latter’s entities.

The 12-Factor App (12-Factor) – a methodology developed by the Heroku platform
team, inspired by their experience and Martin Fowler’s books Patterns of Enterprise
Application Architecture and Refactoring – lists a dozen of practices developers should
follow in order to create apps that better fit the reality of PaaS – Platform as a Service,
refer to Figure 2.7.

Figure 2.7 presents a table comparing three cloud models: on-premises, IaaS and

https://12factor.net
https://heroku.com
https://books.google.com.br/books/about/Patterns_of_enterprise_application_archi.html?id=FyWZt5DdvFkC&redir_esc=y
https://books.google.com.br/books/about/Patterns_of_enterprise_application_archi.html?id=FyWZt5DdvFkC&redir_esc=y
https://books.google.com.br/books/about/Refactoring.html?id=1MsETFPD3I0C&redir_esc=y

2.2 2.2

PaaS.

you

manage

other

manages

on-premises IaaS PaaS

on-premises IaaS PaaS

application

data

runtime

middleware

O.S.

Virtualization

Servers

Storage

Networking

application

data

runtime

middleware

O.S.

Virtualization

Servers

Storage

Networking

application

data

runtime

middleware

O.S.

Virtualization

Servers

Storage

Networking

Figure 2.7: Cloud models: a comparison between on-premises, IaaS and PaaS. On the blue
zone, assets the developer must manage; on the beige zone, assets the provider manages.

Changes caused by CNI into the relationship between business and infrastructure
not only impact how the application runs, but also take it a step further into what
12-Factor proposed, consolidating the Cloud-Native (CN) principle. Applications
should have four characteristics: resiliency embraces failure instead of trying to pre-
vent them; agility allows fast deployments and quick iterations; operability adds the
control of the lifecycle to the application instead of relying on external processes and
monitors; and observability provides information to answer questions about the app
state [GN18].

Resiliency, in the interpretation of CN, can be implemented in three main ways:
design for failure, ergo each microservice is built to embrace failure and is prepared for
a fast reboot; graceful degradation, which is implemented by each microservice storing
in a local cache some information, even if it might be a little outdated – it’s better
to give some answer than none; and declarative communication due to all communi-
cation across the system happening over the network, when the specification of the
requirements happens by defining what is wanted, other than how.

Agility and observability are two factors that come from known features: the adop-

2.2 2.2

tion of microservices as the core architectural decision implies CN agility – each mi-
croservice can be developed, delivered and scaled independently from each other; mak-
ing events the main abstraction for communication and adopting a message broker as
backbone for fast data architecture enhances observability, as every change in state
gets registered in the logs of the broker.

Chapter 3

What is Byron?

Byron is an Event-Driven Microservices Framework. It is a framework to develop sys-
tems following Microservices Architecture that adopts events as its core abstraction
in the communication model, in order to provide decoupling between parts. It’s a
TypeScript framework that generates GraphQL APIs, uses MongoDB as the Cache
with Mongoose as Object-Document Mapping and adopts NATS Streaming as Mes-
sage Broker. The code of the framework is open-source, hosted in a GitLab repository
and can be accessed at https://gitlab.com/byron-framework/cli. There’s also an online
documentation, hosted at https://byron.netlify.com/.

3.1 Architecture

Byron’s architecture is complex and it’s better explained following the C4 Model for
visualizing software architecture. This model adopts an "abstraction-first" approach,
similarly to what Google Maps does: it’s possible to zoom in or zoom out, depending
on the interest – more detail or more context, respectively.

The first concept to understand is a Component: it’s the highest abstraction the
framework defines, it’s supposed to implement a subset of the system’s business logic.
When deployed, it’s placed within a back-end of a web server, so it can be the target
of a request coming from an external client, such as a mobile app or another back-end.
An API-Gateway can be used to abstract externally every detail of inner division, and
its role is to identify the respective API and to redirect the request. Whenever there’s
an event, the Component interacts with the broker, via a publication/subscription
protocol. Figure 3.1 illustrates this context.

12

https://gitlab.com/byron-framework/cli
https://byron.netlify.com/
https://c4model.com
https://c4model.com
https://maps.google.com

3.1 3.1

external

clients

API

Gateway

Message

Broker

Byron

Component

Other

Microservices

request/response

redirection

pub/sub pub/sub

redirection

Figure 3.1: Representation of the context in which a Byron Component (in blue) is placed;
arrows (in green) represent interactions with other elements (in gray)

A Component is internally a set of three microservices: an API, a Sink and a
local Cache. When a request comes from the Gateway – or straight from the client,
when there’s no gateway – , the API is responsible for extracting information from the
request and run a command. If it requires stored data, the API reads the Cache, does
some validation and then sends a response back. If the request causes any change in
the application state, then the API is also responsible for emitting an event notifying
the rest of the change. Any Sink interested in that event then reads it and updates the
Cache with the payload data. Figure 3.2 represents this level of detail.

3.1 3.1

external clients

API Gateway

Message Broker

Byron Component

Other

Microservices

API

Cache

Sink

redirection

read-only

write-only

subscription

publication

Figure 3.2: Representation of a Byron Component (blue border) internal microservices: API,
Sink and Cache (all in blue filling)

The relationship between API and Sink around the Cache implements Command-
Query Responsibility Segregation. The former has a read-only access to the Cache,
while the latter, a write-only access. It’s interesting to mention that this behavior allows
not only independent scale to each kind of access, but also improves responsiveness as
the API is able to respond the request without having to update the state of the Cache.

Going deeper into details, Figure 3.3 represents what elements each microservice of
the Component holds. The API, since it implements a GraphQL API, has a schema –
the DSL inspired by GraphQL1 – and all commands and command hooks provided by
the developer. To query the Cache, the API also has all mongoose models. The Cache
stores all MongoDB Documents. The Sink has the same mongoose models as the API,
once it refers to the same database. It also contains all handlers and handler hooks
provided by the developer.

Going deeper into details, each of the component’s microservices holds its own set
of files. The API holds all commands – all actions that the API offers to the exterior –
and all command hooks – functions that are called in a given moment, either before or
after a command. The Sink holds all handlers – functions that implement reactions to

1For further information, refer to GraphQL Docs

https://graphql.org

3.2 3.2

events in the broker – and all handler hooks – which works similarly to command hooks,
but either before or after handlers. As the API and the Sink access the Cache, both
hold a copy of Mongoose Models – an object that models the structure of documents
in the MongoDB database and implements access methods. Figure 3.3 represents this
level of detail.

Byron Component

API

Sink

Cache

GraphQL

Schema

Command

Hooks

Handler

Hooks

Commands

Handlers

MongoDB

Models MongoDB

Docs

MongoDB

Models

Figure 3.3: representation of what the API, the Sink and the Cache hold inside with more
details

3.2 Hello, Byron!

This section presents a simple case for using Byron, in order to make things concrete:
Calisto, a system to manage undergrad, with a component Students, on which each
student have a name, a course and ingress year.

To begin the development, Byron provides a CLI with the command byron component

init NAME, where NAME is an argument to be passed with the desired name of the
component. It scaffolds a working directory structured as follows:

3.2 3.2

Listing 1 the directory structure Byron uses
NAME/

|-- api/

| |-- commands/

|-- sink/

| |-- handlers/

|-- hooks/

|-- schema.yaml

Byron works in a declarative way with the use of a Domain Specific Language (DSL),
centering all declarations in a schema.yaml file. For this toy example, the Student
component deals with the type Student, that have name, course and ingress year.
The component has the commands getStudents – that returns a list of Students
– and createStudent – that create a new student entry and returns it. And in
order to update the Cache, the Sink has the handler newStudent – that listens to
new.student event and updates the Cache. Listing 2 presents the schema.yaml:

3.2 3.2

Listing 2 a schema.yaml, an example containing types, commands and handlers,
a basic running application

1 name: "Student"

2 namespace: "Calisto"

3

4 content:

5 types:

6 - name: "Student"

7 attributes:

8 - name: "name"

9 type: "String!"

10 - name: "course"

11 type: "String!"

12 - name: "ingress"

13 type: "Int!"

14 commands:

15 - name: "getStudents"

16 type: "query"

17 returnType: "[Student!]!"

18 - name: "createStudent"

19 type: "mutation"

20 returnType: "Student!"

21 parameters:

22 - name: "name"

23 type: "String!"

24 - name: "course"

25 type: "String!"

26 - name: "ingress"

27 type: "Int!"

28 handlers:

29 - name: "newStudent"

30 event: "new.student"

From the type named Student, Byron will create:

• the GraphQL Student type, and

• the Mongoose Student model.

Given that there’s a command named getStudent, Byron will search for a func-

3.2 3.2

tion file api/commands/getStudents.ts in the working directory, with the struc-
ture as follows in listing 3:

Listing 3 a query command function file api/commands/getStudents.ts that returns
all students stored – the parameters are inherted from GraphQL standards2

1 async function getStudents(

2 parent: any,

3 arguments: any,

4 context: any,

5 info: any

6): Promise<any> {

7 // 'context' contains useful objects, such as DB models

8 const { db: { Student } }: any = ctx;

9

10 return await Student.find();

11 }

12

13 // the convention is to export as 'default'

14 export default getStudents;

Similarly, there’s createStudent, a mutation command placed in api/command-
s/createStudent.ts with the structure as follows in listing 4:

3.2 3.2

Listing 4 a mutation command function file api/commands/createStudent.ts that ex-
pect name, course, ingress as arguments, guarantees uniqueness of name and
emits an event in case of all validations are ok.

1 async function createStudent(

2 parent: any,

3 args: any,

4 ctx: any,

5 info: any

6): Promise<any> {

7 const { db: { Student }, Error, uuid }: any = ctx;

8

9 // destruct 'args' into variables

10 const { name, course, ingress }: any = args;

11

12 // consider 'name' as unique

13 let students: any = await Student.find({ name });

14 if (students.length !== 0) {

15 const msg: string =

16 `Student with name [${name}] already exists`;

17

18 throw new Error(msg, '409');

19 }

20

21 student = { _id: uuid(), name, course, ingress };

22 Event.emit('new.student', student);

23 return student;

24 }

25

26 export default createStudent;

Note that in line 22, an event is emitted to notify all the system of that change
in the application’s state.

Finally, from the handler named newStudent, Byron will search from a function
file sink/handlers/newStudent.ts in the working directory, with the structure
as follows in listing 5

3.2 3.2

Listing 5 a handler function file sink/handlers/newStudent.ts that implements the
reaction for the event new.student, storing data in the database

1 declare type Handler = async (

2 ctx: any,

3 msg: any

4) => Promise<void>;

5

6 const newUser: Handler = async (

7 ctx: any,

8 msg: any

9): Promise<void> => {

10 const data: any = JSON.parse(msg.getData());

11

12 const user: any = ctx.db.User.create({ ...data });

13 console.log(user);

14 };

15

16 export default newUser;

This is the minimum code and configuration a developer needs to successfully build
and run a component using Byron.

In order to test, listing 6 defines an automated unit test that inserts a new student
using the mutation createStudent, then search for it with the query getStudent:

3.2 3.2

Listing 6 a simulation of an automated test that runs a createStudent mutation
and asserts that the user was indeed created, by running a getStudents query and
comparing results

1 describe('Byron basic example', () => {

2 let client, server, data;

3

4 beforeEach(() => {

5 server.reset();

6 server.uuid = mockFunction(() => '42');

7

8 data = {

9 name: "John Doe",

10 course: "Computer Science",

11 ingress: 2020

12 };

13

14 client = setupMockClient();

15 client.performMutation(gql`{

16 createStudent (

17 name: ${data.name},

18 course: ${data.course},

19 ingress: ${data.ingress}

20) {

21 _id

22 }

23 }`);

24 });

25

26 test('querying Students returns inserted data', () => {

27 const result = client.performQuery(gql`{

28 getStudents {

29 _id,

30 name,

31 course,

32 ingress

33 }

34 }`);

35

36 expect(result).toBe([{ _id: '42', ...data }]);

37 });

38 });

3.4 3.4

3.3 Features

Byron provides features to help in the development process. At the same time it offers
code generation, the framework also has support for custom code provided by the de-
veloper. In other words, Byron automates part of the code writing, while let developers
focus on implementing business logic.

• code generation: Byron automates the setup for its microservices, scaffolding
code with imports and configurations out of the box. More specifically, the frame-
work generates:

– Mongoose Models : each type defined in the schema.yaml is used as base
for writing a Mongoose model, a structure that implements a MongoDB
schema;

– GraphQL Schema: this file defines all types the API manipulates, such as
extended types, mutations and inputs. From schema.yaml, Byron extracts
all definitions and generates schema.graphql;

– Docker files : Docker is the base of the development environment, and Byron
generates a Dockerfile and a docker-compose.yaml.

• customization: in order to prevent every system generated with Byron to look
the same, the framework supports customization. A developer using Byron can
provide its own:

– business types : within the schema.yaml, a developer can define its own
types that extends GraphQL basic types;

– commands : commands are all action that an API knows how to do. Com-
mands can be queries when it’s just to fetch data, or mutations that change
the application state;

– handlers : handlers implement the behavior a given system have as a response
to an event;

– hooks : lifecycle hooks tweak commands and handlers behavior, by adding
more actions into them;

• scripting: Byron, with its homonymous CLI tool, provides an wrap of Docker
Compose commands, so there’s no need to worry about the generated code – in a
future work, a new feature will be implemented to let developers have easy access
to the generated code, if they intend to simply scaffold a configured system.

3.4 3.4

3.4 When to use

To discuss the situations when the adoption of Byron is beneficial and when it’s not,
this section presents three different cases.

3.4.1 Social Media - beneficial

Suppose there’s a social media with a lot of users across the world, with a great amount
of development teams and a huge demand for content all over the days. This social
media supports some features, such as creating a profile and an institutional page,
posting to a news feed, linking people and interests but does not have a chat system.
This chat is to be developed and for that they intend to adopt Byron.

• the development staff is big, with many teams, which benefits from autonomy
provided by microservices architecture;

• the system is used all across the world with a great demand, also benefiting from
system scalability;

• the feature of chat tolerates eventual data consistency and, thus, asynchronous
messages.

So, this situation represents a case where Byron fits well.

3.4.2 Bank - non-beneficial

Suppose there’s a bank that is re-building its monolith system now adopting microser-
vices architecture. It’s a big bank supporting uncountable online transactions per day,
with a large development staff. The core of the system deals with money, transactions
and security. This core is to be rebuilt and for that they intend to use Byron.

• the development staff is big, with many teams, so it benefit from the autonomy
for development teams provided by microservices architecture;

• the core business does not tolerate eventual data consistency – in that case, a
better approach would be to adopt a synchronous communication model between
the core microservices.

Thus, this situation represents a case where it’s better not to adopt Byron. But
note: that’s only for the core business – other parts of the system, as it’s going to be
microservices, can benefit from Byron.

3.4 3.4

3.4.3 Startup on validation stage - non-beneficial

Suppose there’s a small startup building its validation system. The development staff
only has a five or six developers and the idea is not yet validated in the market. This
system is to be first built and for that they intend to use Byron.

• the development staff is small, so it doesn’t demand a lot of autonomy – and it’s
better not to use microservices, due to the complexity added to the system;

• the system doesn’t have a big demand yet, so system scalability is not an issue
either.

Thus, this situation represents a case where it’s better not to adopt Byron – a
monolith system fits better. But note: that’s only for the initial development – once
the team begins to grow and the system demand raises, then Byron might fit better
on a evolution process from monolith to microservices.

Chapter 4

Study Case

To evaluate Byron’s effectiveness, a study case was performed by using the framework
to develop Perses, a system for management of scientific initiation in schools. The
system developed doesn’t intend to be complete and fulfill its needs, it was used for the
single purpose of a proof-of-concept that Byron provides decoupling by being event-
driven. This chapter presents the study case, along with its application scenarios and
the final analysis.

4.1 Context

Perses is a system for managing scientific initiation in schools. It supports multiple
schools, each coordinated by an user, counting a handful of classes with a teacher
and students.

The system is implemented, accordingly to Byron’s terms, into two components :

• Auth, for dealing with user authentication;

• Groupings, for dealing with schools, coordinators, classes, teachers and students.

This study case aims to provide details in order to answer the research questions,
presented in Section 1. For a better fit with the scenarios, the research questions are
here rephrased with more concrete information:

Q1 Is it possible to propose an architecture that provides data consistency within a
component, even if it is eventual consistency?

Adopting the proposed architecture and considering a single component, is it
possible for the Cache to be updated by the Sink with pertinent data?

Q2 Assuming the proposed architecture, considering more than one component, does
it sustain the eventual consistency across all components?

25

4.2 4.2

Adopting the proposed architecture, considering more than one component, is it
possible for each Cache to be updated by its own Sink with pertinent data?

Q3 Does the proposed architecture provide decoupling between components, in a way
that in case of one failing, the others do not fail too?

The code developed for this study case is available at https://gitlab.com/byron-
framework/study-case, which is a group of repositories. Auth and Grouping are the
two components coded, while scenarios-tests is a code base that runs tests described
in the following section. All the following sections present a scenario and steps to
reproduce it assuming these basic steps:

• install Byron CLI

npm install -global @byronframework/cli

(or yarn global add @byronframework/cli)

• install Docker and Docker Compose

this process depends on which distribution is used, refer to docs.docker.com/install/
and docs.docker.com/compose/install/

• clone the repositories with git clone <repo url>, with the URLS:

https://gitlab.com/byron-framework/study-case/auth

https://gitlab.com/byron-framework/study-case/grouping

https://gitlab.com/byron-framework/study-case/scenarios-tests

• build the components

byron component build path/to/Auth

byron component build path/to/Grouping

4.2 Methodology

The study case is based on scenarios, each one stressing a desired feature of Byron,
intended to provide means to answer a research question.

https://gitlab.com/byron-framework/study-case
https://gitlab.com/byron-framework/study-case
https://docs.docker.com/install/
https://docs.docker.com/compose/install/

4.2 4.2

4.2.1 Scenario - Consistency within a Single Component

research question [Q1] Adopting the proposed architecture and considering
a single component, is it possible for the Cache to be
updated by the Sink with pertinent data?

high level description creates an user by sending a createUser command
to the Auth API and then sends a getUser with
the ID provided on the first command.

metrics the result of the second command (doesn’t fail and brings
correctly the just-created user)

In this scenario, the creation of an user is tested: a user is created accessing the Auth
API directly with a createUser command, then the same user is requested via
getUser, to check if there’s no error and if the data matches with those provided in
the creation.

The steps to reproduce the results of this scenario are as follows:

1. initialize the infrastructure with a broker

byron infrastructure up -N StudyCase

2. run the Auth component

byron component up path/to/Auth

3. enter the scenarios-tests directory and run the first scenario

docker-compose run rm tester yarn first

After running this scenario, the clean up steps are:

• remove the scenario-tests container from its directory

docker-compose down

• remove Auth component

byron component down path/to/Auth

• remove the infrastructure

byron infrastructure down -N StudyCase

The action and the metric where chosen because, since a component implements
CQRS and Event-Sourcing, at the same time as it responds as soon as the data is

4.2 4.2

validated, this test gives enough information to confirm that the Auth component’s
Cache is being updated by the Sink.

Listing 7 presents an interesting part of the testing code:

Listing 7 the main function for running the first scenario, where the user is created,
then it is queried

1 async function test(): Promise<void> {

2 const id: string = await createUser();

3 await listenToNewUser(id);

4 await sleep(1000);

5 await readUser(id);

6 }

One interesting thing to highlight from listing 7 is line 4: to work, the test depends
on a waiting period of 1000ms. This snippet of code highlights the eventual consistency
on the system: the validated data must be broadcast from createUser command via
event, through the broker into all interested Sinks, before the Cache gets updated and
the data gets available for getUser command to fetch it.

4.2.2 Scenario - Consistency across Multiple Components

research question [Q2] Adopting the proposed architecture, considering
more than one component, is it possible for each
Cache to be updated by its own Sink with pertinent
data?

high level description creates an user by sending a createUser command
to the Auth API, then sends a createSchool
command to the Grouping API with the user ID
and finally sends a getSchool command

metrics the result of the last command (doesn’t fail and brings
correctly the just-created school)

In this scenario, the broadcast of events is tested across multiple components: the
creation of a school only happens successfully when a user is provided, so the Grouping
component must have updated its cache with the event of new user emitted by the
Auth component.

The steps to reproduce the results of this scenario are as follows:

1. initialize the infrastructure with a broker

4.2 4.2

byron infrastructure up -N StudyCase

2. run Auth and Grouping components

byron component up path/to/Auth

byron component up path/to/Grouping

3. enter the scenarios-tests directory and run the second scenario

docker-compose run -rm tester yarn second

After running this scenario, the clean up steps are:

• remove the scenario-tests container from its directory

docker-compose down

• remove Auth and Grouping components

byron component down path/to/Auth

byron component down path/to/Grouping

• remove the infrastructure

byron infrastructure down -N StudyCase

These actions and this metrics were chosen because it’s a way to check whether the
Grouping component indeed received from the event the just-created user data. This
test gives enough information to confirm that Grouping Cache is being updated by
Grouping Sink with data from the event emitted by Auth API.

Listing 8 presents two snippets from each of components’ schema.yaml:

4.2 4.2

Listing 8 fragments of Auth/schema.yaml (lines 1 - 13) and
Grouping/schema.yaml (lines 16 - 29) highlighting that the commands are
in different components

1 name: Auth

2 namespace: StudyCase

3

4 content:

5 # ...

6 commands:

7 - name: createUser

8 type: mutation

9 returnType: 'User!'

10 parameters:

11 - name: data

12 type: CreateUserInput

13

14 ---

15

16 name: Grouping

17 namespace: StudyCase

18

19 content:

20 # ...

21 commands:

22 - name: createSchool

23 type: mutation

24 returnType: 'School!'

25 parameters:

26 - name: data:

27 type: CreateSchoolInput

28 - name: userID

29 type: 'ID!'

4.2 4.2

4.2.3 Scenario - Decoupling of Multiple Components and One

Failing

research question [Q3] Does the proposed architecture provide decoupling
between components, in a way that in case of one failing,
the others do not fail too

high level description creates an user by sending a createUser command
to the Auth API, then sends a command that causes
Auth component to stop (simulation of a failure),
creates a school and finally checks whether the
event of role update is emitted properly
and the school is created with the user id

metrics the result of the creation of the school (doesn’t fail
and brings correctly the just-created school with
the user id)

The steps to reproduce the results of this scenario are as follows:

1. initialize the infrastructure with a broker

byron infrastructure up -N StudyCase

2. run Auth and Grouping components

byron component up path/to/Auth

byron component up path/to/Grouping

3. enter the scenarios-tests directory and run the third scenario

docker-compose run -rm tester yarn third

After running this scenario, the clean up steps are:

• remove the scenario-tests container from its directory

docker-compose down

• remove Auth and Grouping components

byron component down path/to/Auth

byron component down path/to/Grouping

• remove the infrastructure

byron infrastructure down -N StudyCase

4.3 4.3

This scenario is interesting to prove that the Byron provides decoupling between
components, such that, even with Auth component being killed, Grouping component
managed to provide an answer to the createSchool command.

4.3 Analysis

The previous section brought all three scenarios this study case implemented, with their
descriptions and some details about the implementation. This section summarizes the
analysis into one.

The objective with the study case was to reason about three main questions pre-
sented in Chapter 1 and rephrased in Section 4.1:

Q1 Is it possible to propose an architecture that provides data consistency within a
component, even if it is eventual consistency?

Adopting the proposed architecture and considering a single component, is it
possible for the Cache to be updated by the Sink with pertinent data?

Q2 Assuming the proposed architecture, considering more than one component, does
it sustain the eventual consistency across all components?

Adopting the proposed architecture, considering more than one component, is it
possible for each Cache to be updated by its own Sink with pertinent data?

Q3 Does the proposed architecture provide decoupling between components, in a way
that in case of one failing, the others do not fail too?

Scenario Consistency within a Single Component (Subsection 4.2.1) presented
elements to answer Q1. Those elements were evidences to prove that, even with some
delay, the architecture of a Component is data consistent (eventual consistency), i.e.,
Auth’s sink indeed listened to the event emitted by the API and broadcast by the
broker, and the Cache was updated. Scenario Consistency across Multiple Com-
ponents (Subsection 4.2.2) presented elements to answer Q2, evidencing the archi-
tecture provides data consistency across multiple components. Scenario Decoupling
of Multiple Components and One Failing (Subsection 4.2.3) presented elements
to answer Q3, which proves that the Byron components are decoupled in a level they
hold up eventual failures without causing a domino effect.

With positive answers for the research questions, it’s enough to say that Byron
fulfill its proposals of being data consistent – even if it’s eventual consistency – and
of providing decoupling between its components – as much as it stands a component
failing without causing fails across the system.

Chapter 5

Comparison between Byron and other
frameworks

There are a plenty of frameworks for web development available 1. Ruby on Rails and
NestJS are two interesting frameworks due to their popularity – the former is very
known, the latter is still rising – and to their approaches of how to organize a system.

5.1 Ruby on Rails

Ruby on Rails is a framework that implements MVC architecture – Model-View-
Controller, a layered architecture. This architectural style provides good organization
for code, which fits well for bootstrapping the system. Since its communication model
is via function call – it runs as a single process –, Rails supports strong data consistency
without latency.

On the other hand, as presented in Subsection 3.4.3, Byron adds much complexity
to early moments of the development, when the development staff doesn’t count with
many teams and the system offer a small set of features.

In the long-term, as the system becomes more complex and more accessed, hence
the requirements for availability and scalability raises, a Rails system ends up facing
the monolith downsides. As a monolith is a single code base that is deployed into a
single process that holds all features of the system, scalabilty becomes an issue: first,
because the management of the only repository with many teams tends to get confuse
and time consuming; then, when deployed, the system gets resource consuming and
hard to optimize since its a single process running.

Byron fits better as a tool for developing a version of the system when these issues
show up, such as the growth in the development staff and the raise in complexity of the

1assuming that WikiPedia doesn’t count every single framework available, it’s
safe to say that there’s at least a few dozens of web frameworks available – here
https://en.wikipedia.org/wiki/Comparison_of_web_frameworks

33

https://rubyonrails.org/
https://nestjs.com
https://en.wikipedia.org/wiki/Comparison_of_web_frameworks

5.2 5.2

system. As Byron provides a system meant to follow microservices architecture, then
there’s gain in both ways: there might be more than one code base, so the management
of the repository gets easier; the deployment of the system get less resource consuming,
since microservices provides scalability on demand, i.e., each microservice gets scaled
up or down accordingly to its own needs.

5.2 NestJS

NestJS is a framework that is rising in popularity2 that follows the Reactive System
principle set, among others, such as Object Orientation and Functional Programming.
Its supported features go from providing a couple of platforms as HTTP Server, to a
progressive architecture – that goes from layered up to microservices.

NestJS adopts an imperative style, where every functionality must be explicitly
coded by the developer, and, with that, one can fully configure the desired behavior.
Byron adopts a more declarative style, as is the case of types in the schema.yaml.
What’s underneath this style is that Byron provides code generation, saving the devel-
oper some work. Also, the schema.yaml provides a fast way one can know what the
component does.

Another difference between NestJS and Byron is related to code generation: Byron
provides Docker configuration to the developer, i.e., a component coded with Byron
has out-of-the-box benefits of a containerized system. As future work, it’s aimed to
support generation of configuration files for Kubernetes3 – a cloud native container
orchestration tool.

2a few companies are already adopting it (https://docs.nestjs.com/discover/companies) and
its repository on GitHub points tens of thousands of other repositories having it as dependency
(https://github.com/nestjs/nest/network/dependents?package_id=UGFja2FnZS00NTI3NzIzMzQ%3D)

3official website: https://kubernetes.io/

https://docs.nestjs.com/discover/companies
https://github.com/nestjs/nest/network/dependents?package_id=UGFja2FnZS00NTI3NzIzMzQ%3D
https://kubernetes.io/

Chapter 6

Conclusion

Modern conditions of software development are extreme in some cases – multiple de-
velopment teams over the same system, deployments that work under massive work-
load, and high demands for availability and short response times [Wam19]. A plenty
of techniques and architectures – such as microservices, command-query responsibil-
ity segregation and fast-data architecture – were created to solve those problems, but
there’s yet a handful of practices that let systems vulnerable to a domino effect.

The aim of this project was to create a solution for developing microservices that
values decoupling, an architecture that provides decoupling while keeping data consis-
tency. To guide this project, three research questions were defined:

Q1 Is it possible to propose an architecture that provides data consistency within a
component, even if it is eventual consistency?

Q2 Assuming the proposed architecture, considering more than one component, does
it sustain the eventual consistency across all components?

Q3 Does the proposed architecture provide decoupling between components, in a way
that in case of one failing, the others do not fail too?

This project presented Byron, an event-driven microservices framework that re-
unites a collection of principles and architectural standards aiming decoupled yet data
consistent components. A framework that offers, via a CLI and a DSL, a declarative
approach for defining a component – a set of an API for handling HTTP requests, a
local Cache to guarantee independence from others, and a Sink to listen to events and
update local cache.

In order to verify that the framework provided decoupling and data consistency,
a study case was conducted. Three scenarios were designed out of a real application,
proving that Byron’s architecture data consistency is eventual – an implication of
the asynchronous message-driven communication model –, either Component-wise and

35

6.0 6.0

across components, and also verifying that components are decoupled – so there’s no
domino effect in case of one’s failure.

During the development of this project, a few ideas emerged for future works around
Byron. The framework would benefit from extensions, such as

• adapters/drivers for other databases to use instead of MongoDB in the local
cache;

• Kubernetes configuration file generation, following the same approach of Docker’s;

• pluggable objects to generate the API in other standards, such as REST in re-
placement of GraphQL;

Other relevant works around Byron are scientific experimentation. Up to now, there
are two main ideas:

1. a research about the developer experience with the framework – how its abstrac-
tions and its workflow benefits development teams using it;

2. since data consistency is eventual, a benchmarking of the time involved in the
broadcast of events;

Bibliography

[08] Web 3.0. Tech. rep. 2008.

[Bon+14] Jonas Bonér et al. The Reactive Manifesto. Tech. rep. 2014.

[GN18] Justin Garrison and Kris Nova. Cloud Native Infrastructure - Pat-
terns for Scalable Infrastructure and Applications in a Dynamic
Environment. 2018.

[New15] Sam Newman. Building Microservices - Design Fine-Grained Sys-
tems. 2015.

[Ric15] Mark Richards. Software Architecture Patterns - Understanding
Common Architecture Patterns and When to Use them. 2015.

[Wam19] Dean Wampler. Fast Data Architectures for Streaming Applications
- Getting Answers Now from Data Sets That Never End. 2019.

37

	Introduction
	Background
	Microservices
	Infrastructure

	What is Byron?
	Architecture
	Hello, Byron!
	Features
	When to use
	Social Media - beneficial
	Bank - non-beneficial
	Startup on validation stage - non-beneficial

	Study Case
	Context
	Methodology
	Scenario - Consistency within a Single Component
	Scenario - Consistency across Multiple Components
	Scenario - Decoupling of Multiple Components and One Failing

	Analysis

	Comparison between Byron and other frameworks
	Ruby on Rails
	NestJS

	Conclusion
	Bibliography

