
https://linux.ime.usp.br/~leolana/mac0499

Course Final Monograph Bachelor’s in Computer Science Instituto de Matemática e Estatística Universidade de São Paulo

References

Jonas Bonér et al. The Reactive Manifesto. Tech. rep. 2014.

Justin Garrison and Kris Nova. Cloud Native Infrastructure -
Patterns for Scalable Infrastructure and Applications in a
Dynamic Environment. 2018.

Sam Newman. Building Microservices - Design
Fine-Grained Systems. 2015.

Mark Richards. Software Architecture Patterns -
Understanding Common Architecture Patterns and When to
Use them, 2015.

Dean Wampler. Fast Data Architectures for Streaming
Applications - Getting Answers Now from Data Sets That
Never End. 2019.

Conclusion and Future Work
 In order to verify that the framework provided decoupling and
data consistency, a study case was conducted. Three scenarios
were designed out of a real application, proving that Byron’s
architecture data consistency is eventual – an implication of the
asynchronous message-driven communication model –, either
Component-wise and across components, and also verifying that
components are decoupled – so there’s no domino effect in case
of one’s failure.

 The framework would benefit from extensions, such as:

adapters/drivers for other databases to use instead of
MongoDB in the local cache;

Kubernetes configuration file generation, following the same
approach of Docker’s;

pluggable objects to generate the API in other standards,
such as REST in replacement of GraphQL.

Background

adopting API Gateway, the system itself
routes the requests to the correct
microservices, unifying the address to
the external client

adopting CQRS, on which is possible to
better fit the requirements of read and
writes that might be different, by
scaling independently ms 1 or ms 2

adopting Event Sourcing, on which ms2
and ms3 don’t have to wait for ms1 to
process the request.

on the right, a small ∆t, since the
response happens as soon as possible,
hence higher responsiveness.

following microservices architecture, on
which its parts can be scaled up
individually according to their needs.

message-driven paradigm, on which,
although the system is based on data
replication, its microservices don’t have
a direct dependency between each
other.

What is Byron?

Architecture

 Byron is an Event-Driven Microservices Framework. It is a framework to develop systems following Microservices Architecture that adopts
events as its core abstraction in the communication model, in order to provide decoupling between parts. It’s a TypeScript framework that
generates GraphQL APIs, uses MongoDB as the Cache with Mongoose as Object-Document Mapping and adopts NATS Streaming as
Message Broker.

 Byron’s architecture is complex and it’s better explained following
the C4 Model (https://c4model.com) for visualizing software
architecture. This model adopts an "abstraction-first" approach,
similarly to what Google Maps does: it’s possible to zoom in or zoom
out, depending on the interest – more detail or more context,
respectively.

When to use
 To discuss the situations when the adoption of Byron is beneficial
and when it’s not, this section presents three different cases.

 A Component is the highest
abstraction defined, it’s supposed
to implement a subset of the
system’s business logic. It’s
deployed within a back-end of a
web server, being target of a
request from an external client. An
API Gateway can be used to
abstract externally the inner
division. Whenever there’s an
event, the Component interacts
with the broker, via a pub/sub

protocol.

 A Component a set of three
microservices: API, Sink and local
Cache. When a request comes in,
the API is responsible for
extracting information from it and
run a command. If it needs stored
data, it reads the Cache. If the
request causes any change in the
application state, the API is also
responsible for emitting an event
notifying the rest of the change.
Any Sink interested in that event
then reads it and updates the
Cache with the payload data.

Going deeper into details, each
of the component’s
microservices holds its own set
of files. The API holds all
commands and all command
hooks. The Sink holds all
handlers and all handler hooks.
As the API and the Sink access
the Cache, both hold a copy of
Mongoose Models.

Social Media - beneficial
 Suppose there’s a social media with a lot of users across the
world, with a great amount of development teams and a huge
demand for content all over the days. This social media supports
some features, such as creating a profile and an institutional page,
posting to a news feed, linking people and interests but does not
have a chat system. This chat is to be developed and for that they
intend to adopt Byron.

the feature of chat tolerates eventual data consistency and,
thus, asynchronous messages.

the system is used all across the world with a great
demand, also benefiting from system scalability;

the development staff is big, with many teams, which
benefits from autonomy provided by microservices
architecture;

Bank - non-beneficial
Suppose there’s a bank that is re-building its monolith system now
adopting microservices architecture. It’s a big bank supporting
uncountable online transactions per day, with a large development
staff. The core of the system deals with money, transactions and
security. This core is to be rebuilt and for that they intend to use
Byron.

the core business does not tolerate eventual data
consistency – in that case, a better approach would be to
adopt a synchronous communication model between the
core microservices.

the development staff is big, with many teams, so it benefit
from the autonomy for development teams provided by
microservices architecture;

Startup on validation stage - non-beneficial
Suppose there’s a small startup building its validation system. The
development staff only has a five or six developers and the idea is
not yet validated in the market. This system is to be first built and for
that they intend to use Byron.

the system doesn’t have a big demand yet, so system
scalability is not an issue either.

the development staff is small, so it doesn’t demand a lot
of autonomy – and it’s better not to use microservices, due
to the complexity added to system;

Introduction

Q1
Is it possible to propose an architecture that provides data
consistency within a system component, even if it’s
eventual consistency?

Q2
Assuming the proposed architecture and considering more
than one component, does it sustain the eventual
consistency across all components?

Q3
Does the proposed architecture provide decoupling
between components, so that in case of one failing, the
others doesn’t fail too?

 In the past twenty year, the Web became ubiquitous to the point
where availability and reliability are essencial to online systems.
This demand pushed systems to become more complex: there
are a lot of aspects that increase the chance of failure and there
are a handful of practices that make them highly coupled, when a
failure in one part causes failures all across the system.

 The aim of this project is to create a solution for developing
microservices that values decoupling, an architecture that
provides decoupling and data consistency. To guide this project,
three research questions were defined:

 To reach this objective, it was built Byron – an event-driven
microservices framework. It is based on three major principles:
reactivity addresses the demand issue, stressing qualities about
response times and internal communication standards; Cloud-
Native focus on guiding the development of an application that is
conceived to run with an automated, fully managed
infrastructure; and Fast-Data models data handling as soon as it
arrives.

Byron - an Event-Driven Microservices Framework

João F. Daniel¹ Leonardo Lana¹

authors:

Prof. Dr. Alfredo Goldman¹ Prof. Dr. Eduardo Guerra² BsC. Renato Cordeiro¹

advisors:

¹ Instituto de Matemática e Estatística - Universidade de São Paulo ² Instituto Nacional de Pesquisas Espaciais

