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Chapter 1

Introduction

Building and deploying complex distributed systems is hard. There are a lot of aspects that
increase the chances of failure and there are a handful of tasks that make the development
process repetitive and time consuming. Automation, observability, availability and continuous
delivery are some of the key concerns in order to succeed in this task.

The aim of this project is to build Byron, a framework that helps developers to work around
the initial overload in their processes to build cloud-native reactive microservices applications,
i.e., systems that use a state of the art architecture to achieve these goals.

Byron will define a Domain Specific Language (DSL) to represent the application’s entities
and their relationships, allowing developers to focus on the business domain. It will also count
with a Command Line Interface (CLI) that will be the single tool to set up the app in the cloud
by bootstrapping basic resources and rolling new releases. This way, Byron will make it easier to
create and deploy distributed systems for complex domains.

In the next sections, chapter 2 presents a literature review about architectural principles
and infrastructure technologies that will be used. Chapter 3 details the proposal of the project,
delineating the development workflow intended for Byron. Finally, chapter 4 presents: Lean
Inception Methodology adopted to define the development of the framework and the CLI along
the year as well as the general work plan to make this project.

1



Chapter 2

Literature Review

2.1 Architecture

The software architecture of a computing system is the set of structures needed to reason about
the system, which comprise software elements, relations among them, and properties of both.
Documenting Software Architectures, Bass et al

2.1.1 Layered Architecture

The Layered Architecture, also known as n-tier, it is the most common software architec-
ture, because it works very well as a starting point for most applications ([Ric15]). It is often
implemented in four layers: presentation, business, persistence and database ([Ric15]), in which
a given layer provides to another layer strictly above it an abstraction of all layers beneath it.
Hence, two powerful features of this architecture are separation of concerns and layer isolation.
The former provides a very clear organization for the structure of the system, whereas the latter
means that changes within a layer should not impact other layers.

Even though the Layered Architecture fits very well in the beginning of development, there
are two major problems with it. First, there is the architecture sinkhole anti-pattern –
many requests may be attended by a single layer deep in the architecture, but to get into this
layer, they need to run through all layers, thus causing a unnecessary overhead. Second, this
architecture tends to lead to a monolithic application ([Ric15]) – a structure that keeps all
application features tied up into a single executable or binary –, which compromises software
deployability and scalability.

2.1.2 Microservices Architecture

The Microservices Architecture is an architectural model on which the system gets divided
into a set of independent components called microservices – not a single codebase, executable
nor binary anymore. It rose in popularity because it provides two ways of scalability: in team
sizes and in volume of work to be executed ([New15]). This independence between parts of the
system enforces independent deployment of components, allowing different development teams to
move at their own speed. It also enables each microservice to be scaled up or down independently,
according to its own workload ([Ric15]).
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Since this model of architecture is very new, there is still a debate on how to divide an
application into microservices. Currently there are two main guidelines: by functionality, where
each one gets its on microservice; or by context, where each group of functionalities – defining
a context – gets its own service ([New15]).

Although this architecture has become very popular, it is not the best solution for all systems.
The Microservices Architecture focused scalability. Whenever that is not an issue to the appli-
cation, then it is better not to adopt this architecture ([New15]). That is because microservices
offers a series of difficulties to overcome since it creates a distributed system. Those difficulties
can be dealt with some microservices patterns, as follows:

• API Gateway provides an abstraction of the system APIs to their clients, making the
microservices system to look like it is a single component system.

• Service Mesh provides the system a communication model based on rules and policies,
managed by a service-independent component, enhancing the decoupling of responsibilities.

• Sidecar deals with peripheral tasks, such as dealing with redirections and telemetry, hence
providing each microservice an abstraction of the rest of the system.

• Event Sourcing enables microservices to care of their own state in isolation, whereas
notifying changes to other components via message-passing.

• Command-Query Responsibility Segregation (CQRS) decouples the reading and
writing model of services, thus optimizing each operation according to the use cases.

2.2 Infrastructure

2.2.1 Virtualization

Running servers on-premises – self-managing physical machines – is often expensive due to its
demand of time to configure and maintain. Virtualization – emulating the hardware in software
– is an alternative to that.

Virtual Machines

For many years, Virtual Machines (VMs) were the trending solution to achieve idempotence
– the ability to reproduce behavior based only on the input: same input, same output, no in-
terference of environment. With a hypervisor running multiple VMs, it is possible to isolate an
application from others in the same physical machine, so there is no interference between apps;
it also enables a better fit between the application and the environment, therefore spending less
resources; and improves portability, allowing the app to run on any physical machine ([GN18]).

When a VM is launched, the Operating System (OS) of the physical machine (host) emulates
another entire OS (guest) over itself – it is a big overhead compared to running the application
directly in the host. For that reason, VMs are no longer the trending solution in virtualization –
although it is still important when it comes to the cloud (subsection 2.2.2).
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Containers

Containerization is a technique that encapsulates code, dependencies, networking and file-
system into a single process. There is a resemblance with what a VM does, but there’s a major
difference: a container is an isolated process created directly by the host OS – there is no need
to stack another OS.

Among the containers engines, Docker is currently the most relevant. For Docker, an "image
is a lightweight, standalone executable package of software that includes everything needed to run
an application: code, runtime, system tools, system libraries and settings" ([Inc19]). In addition,
a Docker container is simply an instance of the image running in memory.

2.2.2 Cloud

Infrastructure as a Service

Cloud providers offer Infrastructure as a Service (IaaS), that means all the infrastructure
– networking, storage and compute – can be consumed as needed ([GN18]). IaaS has changed
the relationship between infrastructure and business: the demand for infrastructure goes from
buying hardware to requesting VMs via an API. This format creates new possibilities for work
automation, even though it still requires infrastructure management.

Platform as a Service

Platform as a Service (PaaS) goes one step higher in abstraction level: it abstracts the operat-
ing system and environment from applications – it is platform’s job to manage the infrastructure.

This abstraction of the O.S. forces developers to write code in a different way, as the platform
will be managing it – with PaaS, there is no more SSHing into a VM to install dependencies. The
Twelve-Factor App (12-Factor) – a methodology developed by the Heroku platform team, inspired
by their experience and Martin Fowler’s books Patterns of Enterprise Application Architecture
and Refactoring – lists a dozen of practices developers should follow in order to create apps that
better fit the platform reality.

Even though PaaS is a very high-level solution to infrastructure, there is a trade-off: devel-
opers have to give application flexibility in order to make the infrastructure being someone else’s
responsibility ([GN18]).

Cloud-Native Infrastructure

Cloud-Native Infrastructure (CNI) is an infrastructure that is hidden behind useful ab-
stractions, controlled by APIs, managed by software, and has the purpose of running applications
([GN18]). These features determine a scalable and efficient pattern to manage infrastructure.

Adopting useful abstractions enables CNI to manage the IaaS by creating a new layer of
abstract objects above it. It then exposes an API to be consumed avoiding re-implementation.
Being managed by software is a core feature of CNI: it enhances scalability, resiliency, provisioning
and maintainability of the infrastructure. That is because the management software enters in

https://12-factor.com
https://www.heroku.com
https://books.google.com.br/books/about/Patterns_of_enterprise_application_archi.html?id=FyWZt5DdvFkC&redir_esc=y
https://books.google.com.br/books/about/Refactoring.html?id=1MsETFPD3I0C&redir_esc=y
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between the layer of abstraction created by CNI and the underlying IaaS, mapping the new
abstract objects into preexisting IaaS entities.

These changes in the relation with infrastructure not only impacts how it runs, but also takes
the application running over it a step further into what 12-Factor proposed, consolidating what
is called the Cloud-Native Principle.

2.3 Application Principles

2.3.1 Cloud-Native

Cloud-Native (CN) is a set of architectural principles for applications that run on a cloud-
native platform. Cloud-Native applications should follow four principles: resiliency embraces
failure instead of trying to prevent them; agility allows fast deployments and quick iterations;
operability adds control of the lifecycle from inside the app instead of relying on external
processes and monitors; and observability provides information to answer questions about the
app state ([GN18]). These design characteristics can be achieved with a few methods:

• Resiliency can be implemented with three concepts in mind: design for failure, graceful
degradation and declarative communication;. Traditional infrastructure was built to resist
failure, but CN apps embrace failure and implement solutions for fast starts and restarts;
CN apps also are exposed to a huge amount of traffic and must handle situations where
there is a massive incoming load. Apps with Graceful Degradation always answer under
these extreme situations, even if the only possible answer is a partial or outdated (cached)
response ([GN18]). In a CN environment, communication happens through the network,
which allows the parts to send high-level declarative message – implementation details get
covered by an exposed remote API. The adoption of this behavior moves the abstraction
ruler upwards and generates a standardized communication model ([GN18]).

• Agility can be achieved by adopting microservices architecture (subsection 2.1.2): each
microservice can be developed by separate teams and can be delivered independently – the
key is to keep valid the contracts between them.

• Operability can be obtained when an application exposes health check with a command or
endpoint, because the application is the one who should know if it’s running properly, or in
which conditions is it running on (the spectre is wider than only "healthy" or "unhealthy").

• Observability is enhanced with telemetry data, that focus in service information. There’s
a considerable resemblance between Health Check reports and Telemetry Data, but the
former doesn’t need to trigger any alert due to the automation of the platform underneath
– it should be prepared to restart the app in case of failure, for instance –, but the latter
deals with data that should be alerted in unexpected cases ([GN18]).

2.3.2 Reactivity

Today’s demand for high availability and low response times led organizations to create a new set
of patterns for developing software. Reactive Systems is the set of patterns that makes systems
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more robust, more resilient and more flexible ([Bon+14]).
Reactive Systems follow four characteristics: responsiveness, they focus on providing con-

sistent and reasonable response times, so that it enhances reliability and simplifies error handling;
resiliency, they keep the system responsive in face of a failure; elasticity, without bottlenecks,
the system can stay responsive in various workloads; and message driven, interchanging asyn-
chronous messages along the system provides loose coupling by defining boundaries between
components.

• Responsiveness can be implemented by returning a response to the user as soon as the
system identifies the data is consistent.

• Resiliency is achieved by four actions: replication, when a component has many copies;
containment, as a system keeps its own state isolated from other systems; isolation, meaning
that parts are independent in lifecycles and have independent processes; and delegation,
when a process delegate a task to another, it gets free to do another task or even to observe
the original task in the other process.

• Elasticity means that the system is designed in compatibility with up scales and down
scales, hence presenting no bottlenecks.

• Message-Driven is a away to define boundaries between components: asynchronous mes-
sage passing does not violate the isolation of internal state, furthermore it allows commu-
nication between the system components. It can be implemented using a message broker
(section 2.4.2)

2.3.3 Fast Data

For years, big data applications have been processing data in batches. Nowadays the scale of
communication over the internet made this batch-orientation a commercial disadvantage and
modern systems are migrating to stream-oriented data processing. This stream-orientation allows
data to be processed as soon as it arrives in the system, creating what’s called Fast Data
Systems (FDS) ([Wam19]), which handles data as possibly infinite streams. Batch processing,
in turn, is just a subcase where streams have an end.

To follow a Fast Data Architecture (FDA), a system needs to implement a stream-
oriented data back-plane, relying on log systems and message queues. It also needs to make logs
its main abstraction – streams comes from beneath it, such as telemetry data, service logs with
implementation details and write-ahead for databases CRUD transactions.

2.4 Databases

When building system, more often than not, we need to save the data generated by the usage
of the system. A common way to do so is using databases, a collection of related data, known
facts that can be recorded and have implicit meaning ([EN16]).



2.4 2.4

2.4.1 Relational

A Relational database is based on the model of mathematical relations - which means tables
of values. They generaly use the Structured Query Language (SQL) to manage the data.
Relational databases raise in popularity due to the soft learning curve of SQL along with the
simplicity of the model. This query language made relational databases also known as SQL
databases.

Although efficient and simple, the use of tables to store the data is a rigid model, not allowing
easy changes to the structure – if one item in the table changes its structure, the whole table must
be changed. Hence, making structural changes in production relational databases a troublesome
task.

Another limitation of the relational model is that not all data is better represented by a
table. This is often referred as impedance mismatch, where a formatting layer must be added
between the application and the database – lists are an example, because SQL databases do not
support the representation of arrays.

Relational databases were not designed to run on clusters, but there are workarounds. One
alternative is Sharding, a technique on which different sets of data can be store in different
databases ([SF13]), but the application must control which database is used to save its data;
another is using Clustered Relational Databases, like Microsoft SQL Server, that uses a
cluster-wide file system to store data, but it still has only one single point of failure ([SF13]).

2.4.2 Non Relational

The Non-Relational databases (NoSQL) are databases that don’t follow the mathematical
model of relations – some model their data as a graph, other as a document, for instance. The
term NoSQL came out of an relational database that didn’t use SQL as query language ([SF13]).

Document-Oriented Database

Document-Oriented Database uses document as its main model. It usually stores and re-
trieves documents written in data serialization languages – such as JSON, YAML or XML –,
which allows to write the data in a hierarchical structure. Maps (lists), collections (hash) or
scalar values (integers, strings and booleans) are possible values in that structure.

There is a couple of benefits of using Document-Oriented Databases. The first is the fact
that documents are weakly structured, which means that the keys contained in each document
can vary – this is possible due to the lack of rigid structure. The second is high availability:
these databases use a primary-replica setup, where the data is replicated in other instances of
the database, freeing the application of concerning about which nodes are available for reading.

The replica set setup is also really beneficial for scalability in heavy-read applications – those
apps where the ratio between read and write is very big –, as we can just add another replica
to the set to use it for reading. When it comes to heavy-write applications – where the ratio
between read and write is very small –, the sharding model can be used, similarly to relational
databases.
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Message Broker

To explain what a Message Broker is, we need to define some terms first. An event is a
significant transition in state, for example, consider a car going from "for sale" to "sold" – an
event doesn’t exist, it only occurs. A message is the implementation of an event, it is an object
used to notify the system an event has occurred.

The Message Broker uses a Message Queue (MQ) to make circulate the messages – usually
asynchronously emitted – from some component of the system to other components. The MQ is
both responsible for receiving messages and broadcasting its arrival across the system.

Message Brokers also use the Event Log model to store their data. This means that they
don’t store the final (or current) state of the system, they store the history of changes – the
broadcast messages – and build the state using this history.



Chapter 3

Proposal

Developing software that attends modern needs, such as scalability, became a complex task. Even
though each demand may be individually solved by the adoption of an architectural principle or
an infrastructure tool, there is still the challenge of implementing solutions together coherently.

This project proposes to build Byron – a framework that aims to assemble the state-of-art
architectural principles. Byron will make easy to build cloud-native reactive microservice systems
easy by providing a simple development workflow implemented in a command-line interface
(CLI).

3.1 Developers Interface and Workflow

Byron’s Command-Line Interface (CLI) will be the tool to guide the development workflow
within Byron Framework. The CLI will bootstrap a directory structure on which the developer
will work upon. This structure provides organization of the files, according to:

• customResolvers/: a directory to store all custom resolvers the developer may use;

• hooks: a directory to store all lifecycle hooks, functions to be called in a given situation;

• config.byron: a file containing infrastructure configuration, based on Helm Charts;

• credentials.byron: a file containing credentials to access the cloud provider;

• schema.byron: a file describing the GraphQL API for that component, along with Byron
annotations to indicate custom behavior;

Once it is done, the developer using Byron might define the entities his software will deal with
using the DSL. Byron will also provide a set of annotations in order to specify some operations
and code-related configurations, from validation of type’s attributes to configuring the granylarity
of the generated events.

Whereas annotations in the DSL provide standard behaviors, the developer will probably
want to define into the code some business logic that differs from standards. Life cycle hooks
and custom resolvers supply ways of doing that. The former is to be used for ensuring policies
and debugging purposes; the latter creates new features in the API along with its implementation.
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The developer will be able to manage the deployment of that application in the cloud provider
using Byron’s CLI tool, as long as he keep his interactions via this presented interface, not editing
the generated code. Byron allows the user to access this code, but once it is done, the CLI will
not manage the deployment anymore. This might cause estrangement, but it follows the idea of
using Byron exclusively as a bootstrapping to the system, overcomming the initial overhead of
setup.

3.2 Generated System’s Architecture

Byron follows a rigid and well-defined architecture, presented as follows.

3.2.1 Context

Byron will build a single API back-end that will be consumed by external clients – either front-
end sites and mobile apps, or other systems – controlled by users. All this communication will
happen via HTTP requests, following GraphQL standards. All the system will be hosted at a
Kubernetes cluster.

Figure 3.1: Context: a model presenting the application context.

3.2.2 Containers

The back-end is composed by three major containers: the API Gateway, the Message
Broker and a set of Components. The API Gateway unites each component ’s API into a
single one, so when a request comes in, the Gateway redirects it to the correspondent component.
Each component is responsible for treating and validating a subset of the system’s data model.
Frequently, the same piece of data is required by different components, so they must communicate
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with each other to spread the it. The Message Broker is the backbone that supports all the
communication between components.

Figure 3.2: Containers: a model presenting the application containers.

3.2.3 Components

Each element in the set of components is subdivided into three components: the API, the
Cache and the Sink. The capabilities of that component are exposed to the system via API
– and furthermore, to the outside world via API Gateway. When a request comes in, the API
is the one who deals with it. First it validates the data, applying validation rules that often
requires reading the Cache. When it’s all fine, the API takes two actions: it responds through
the Gateway back to the client and it also wraps data into events and publishes them into the
Broker. The Sink is responsible for listening to the broker for relevant messages, so that when
they are broadcast, it unwraps the data and updates the component ’s state by inserting that
data into the Cache.
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Figure 3.3: Components: a model presenting the application components.



Chapter 4

Work plan

4.1 Lean Inception

The Lean Inception is a process created with the objective of pinning down which features
should be present in the Minimum Viable Product (MVP) and how to implement them,
aligning technical knowledge and business agreement along the team about the product ([Car14]).

This method was elected to be followed, because it provides ways of aligning the team’s vision,
and also guides the definition of what should and should not be developed. First we achieved a
common vision about the framework, then we define the order and priority of the features we
should implement. Our notes made during this process can be found in the attachment section.

4.2 Calendar

The next steps are described as follows. Inception and Prototyping unites what is left to do in
terms of preparation and prototyping: finish the lean inception in order to define a clear sequence
of features and close the prototyping in order to draw the outlines of the DSL interface. Partial
Monograph is relative to the tasks of writing a mid-process monograph describing the on-going
project, along with definitions that came after this proposal. Green, Yellow and Red Features
are consequences of the lean inception: each tier is a set of features to be developed, and the
sequence green-yellow-red represents the relevance and value for the MVP – the specification of
the features in each tier will be announced in the partial monograph. Study Case stands for the
study case over which Byron will be used as a proof of concept: the idea is to build a micro blog
inspired on Twitter, an application that is known to need a high scalability and availability – a
good match of requirements for Byron. Finally, Final Assets details the tasks for the conclusion
of this project, such as writing the final monograph and preparing the poster.
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Task Duration Deadline

Inception and Prototyping 1 month and a half June, 10th

Partial Monograph 3 weeks mid July

Green Tier Features 3 weeks July, 1st

Yellow Tier Features 4 weeks August, 1st

Red Tier Features 4 weeks September, 1st

Study Case 3 weeks September, 25th

Final Assets 5 weeks November, 1st

Table 4.1: Calendar table
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